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ABSTRACT

Comparative genomic hybridization (CGH) is a laboratory method to measure gains and
losses in the copy number of chromosomal regions in tumor cells. It is hypothesized that
certain DNA gains and losses are related to cancer progression and that the patterns of these
changes are relevant to the clinical consequences of the cancer. It is therefore of interest to
develop models which predict the occurrence of these events, as well as techniques for learn-
ing such models from CGH data. We continue our study of the mathematical foundations for
inferring a model of tumor progression from a CGH data set that we started in Desper et al.
(1999). In that paper, we proposed a class of probabilistic tree models and showed that an
algorithm based on maximum-weight branching in a graph correctly infers the topology of
the tree, under plausible assumptions. In this paper, we extend that work in the direction of
the so-called distance-based trees, in which events are leaves of the tree, in the style of models
common in phylogenetics. Then we show how to reconstruct the distance-based trees using
tree-� tting algorithms developed by researchers in phylogenetics. The main advantages of
the distance-based models are that 1) they represent information about co-occurrences of all
pairs of events, instead of just some pairs, 2) they allow quantitative predictions about which
events occur early in tumor progression, and 3) they bring into play the extensive methodol-
ogy and software developed in the context of phylogenetics. We illustrate the distance-based
tree method and how it complements the branching tree method, with a CGH data set for
renal cancer.
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1. INTRODUCTION

Recent research in cancer genetics focuses on identifying changes in the DNA of tumor cells
that cause the processes of cell division, cell differentiation, or cell death to go out of control. For

each type of cancer, it is desirable to identify genetic changes associated with that type of cancer and to
understand the relationships between the submicroscopic genetic changes and the tumor phenotype and
clinical outcome.

This research program is facing a number of challenges. First, a genetic change may predispose the
cell to undergo more changes, so it is necessary to separate cause from effect, and it is desirable to
infer the order in which the alterations occurred. However, it is dif� cult to get repeated samples of the
same tumor over time. Therefore, we need methods that can infer progression and causality from a single
genome-wide “snapshot” of each tumor. A second dif� culty is that, even when a collection of samples is
clinically homogeneous, and the tumor cells look similar under the microscope, the tumors may turn out
to be genetically heterogeneous in their causes. Finally, collecting samples from tumors, especially in the
least common types of cancer, is dif� cult to carry out in a large scale, and therefore analysis needs to be
done on small numbers of samples.

The relationship of chromosomal abnormalities to cancer was � rst worked out in forms of leukemia
where relatively simple exchanges of DNA between two chromosomes (called translocations) were causally
associated with cancer (Nowell, 1976). The analysis of solid tumors, such as breast cancer, prostate cancer,
and kidney cancer, has proven much more dif� cult because solid tumor cells appear to have a much larger
set of genetic changes. Many of these changes may be random, while others are related causally to each
other and to tumor development. Understanding the causal relationships and time ordering of these changes
could shed light on their clinical consequences.

Since the genetic changes that are potentially causally related to solid tumors are many and spread
all over the genome, laboratory techniques that provide a genome-wide view of genetic alterations are
needed. We have applied our methodology to data collected by a technique called Comparative Genomic
Hybridization (CGH) (Kallioniemi et al., 1992). A normal cell should have two copies of the DNA for
each entire chromosome. CGH provides a genome-wide survey of chromosomal regions in which tumor
cells and normal/control cells have signi� cantly dissimilar amounts of DNA. Such regional gains or losses
of DNA in a tumor cell are called copy number aberrations (CNAs). Copy number aberrations are thought
to be important indicators of cancer-related genes in the region—a gain could indicate a hyperactive
oncogene, while a loss could indicate a tumor suppressor gene whose activity level is pathologically
low.

A CGH experiment yields a list of chromosomal regions with gains or losses in the tumor. CGH is
carried out by � uorescently labeling equal volumes of a sample of normal DNA and a sample of tumor
DNA with two different colors. The two samples are then biochemically matched in a process called
hybridization and images are taken of the hybridizing DNA. Image analysis is then used to quantify the
ratio of the two colors in each region. A range of normal ratios [1=r < 1 < r] is prescribed. Any region
outside the normal range is reported as a gain or loss for the tumor, depending on whether the tumor color
is more or less prevalent. An exposition on CGH and a survey of its applications can be found in (Forozan
et al., 1997).

CNA data represent a set of genetic changes that took place in some unknown order. CGH studies
of various types of cancer suggest that the CNA lists are not entirely random, in that various CNAs or
combinations of CNAs appear to be causally linked to the cancer and to each other. Using the CNA lists
as input, our goal is to use mathematical modeling in order to identify for each cancer type:

1. A set of genetically signi� cant events which appear to be causally related to the particular cancer type,
as opposed to events that occur randomly.

2. The order of such events, and especially the early events.
3. Groups of events that tend to occur together, possibly indicating a set of alterations whose co-occurrence

greatly enhances tumor development.
4. Any apparent cause-and-effect relationships between CNA events that could be further evaluated in the

laboratory.
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Our modeling work was inspired by the work of Vogelstein et al. (Fearon and Vogelstein, 1990; Vo-
gelstein et al., 1988) on a type of colorectal cancer with visible and distinguishable precancerous stages.
Vogelstein et al. were able to associate speci� c genetic changes with four of the stages of cancer progres-
sion. The genetic changes are irreversible and the presence of all four changes indicates that the cell is
cancerous. In mathematical terms, this provides a path model for tumor progression, where we think of
the cell starting from a healthy, normal state and proceeding down a path with four vertices representing
different genetic changes. (In fact, the genetic changes will not always occur in the order of the path, but
the path de� nes a preferred order.)

Unfortunately, attempts to � nd similar path models for other types of cancer have not been successful.
CGH studies such as (Kuukasjärvi et al., 1997) suggest that this is because many cancers are genetically
heterogeneous, in that clinically similar cancers have different genetic causes. Furthermore, many types
of cancer do not have clearly distinguishable premalignant steps like those found in the colorectal cancer
studied by Vogelstein et al. A tree model is the simplest natural generalization of a path model, so we use
trees in order to capture this heterogeneity.

In this paper, we further develop the mathematical models presented in Desper et al. (1999) and present
algorithms for identifying early genetic changes and classes of genetic changes that tend to occur together
in a tumor. In Desper et al. (1999), we proposed a class of tree models for oncogenesis, called in this
paper branching trees. A branching tree has a root vertex representing a normal cell, while the other
vertices represent observed CNAs of interest. An edge from CNA i to CNA j indicates that the occurrence
of i increases the probability for the occurrence of j . We proposed a method for reconstructing the
branching tree by the maximum-weight branching algorithm (Karp, 1971), and proved that, under plausible
assumptions, this algorithm converges to the correct branching tree.

One of the tools used in the convergence proof in Desper et al. (1999) was inspired by research on
phylogenetic trees. The analogy between evolving tumors and evolving species had been observed by
Buetow et al. who used phylogenetic methods to genetically classify a set of liver tumor samples (Buetow
et al., 1998). In this paper we expand on this analogy by proposing a different class of tree models
for oncogenesis that enable us to use phylogenetic tools more directly and extensively. The tree models
considered here are called distance-based trees, as distinct from the branching trees of (Desper et al.
1999). In the distance-based trees, CNAs of interest are all leaves of the tree, while the internal vertices
are hypothetical hidden events (extinct species in the phylogenetic analogy). The observed lists of CNAs
are used to de� ne distances between each pair of CNAs. We seek a tree whose leaves represent the CNAs
and lengths for the edges of this tree, such that the leaf-to-leaf distances in the tree approximate the
computed distances as closely as possible. The problem of � nding a tree that best � ts a given set of
pairwise distances has been studied extensively in phylogenetics (Swofford and Olsen, 1990; Barthélemy
and Guénoche, 1991), thus, we can take advantage of a well-developed body of literature and algorithmic
methods. In the same spirit as in Desper et al. (1999), we prove that, using one particular method of tree
reconstruction, we can � nd a tree that is provably close to optimal.

In Section 2, we de� ne the branching and distance-based tree models. Section 3 reviews relevant material
from the phylogenetics literature, presents the distance-based tree reconstruction method, and includes our
main theorem showing that the tree we reconstruct is near-optimal. In Section 4, we illustrate the application
of the distance-based method on a relatively large renal cancer data set, and we compare it to a branching
tree on the same data set, as per Desper et al. (1999). Although the two methods are very different
mathematically, the trees share many topological properties and suggest several similar predictions about
which CNAs are most relevant to renal cancer. More comparisons of the two types of tree models and
comments on future work are presented in the Discussion.

2. TREE MODELS FOR ONCOGENESIS

2.1. The model

The input to our analysis is a set of lists of copy number aberrations (CNAs), one list from each tumor.
Each CNA list may include gains and losses from each arm of each human chromosome (we ignore the
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Y chromosome because it contains mostly repetitive DNA that cannot be easily analyzed by CGH). The
other 23 human chromosomes are denoted 1; 2; : : : ; 22, and X. All chromosomes have a long arm, denoted
q , and all except 13, 14, 15, 21, 22 have a substantial short arm denoted p, so there are 41 arms. The
actual gains and losses may not necessarily span an entire chromosome arm, but we � nd it dif� cult to
decide when two subarm intervals should be treated as the same or not. Nevertheless, it is possible for a
tumor to have both a gain and a loss (on different sub-intervals) of one chromosome arm. Therefore, there
is a total of 41 ¢ 2 D 82 possible CNAs.

For our analysis, we focus on a much smaller subset, because most of the 82 possible CNAs either do
not appear at all or appear very few times in a manner that seems to be random noise. In Desper et al.
(1999) we used a clique heuristic for selecting the relevant CNAs; here we use an established statistical
heuristic of Brodeur et al. (1982) to select a set of apparently nonrandom CNAs to model.

Let L be this reduced set of CNAs. Each list of CNAs is thus a subset of L. In fact, we can consider the
given set of lists as samples from a probabilistic distribution over 2L, the set of all subsets of L. We use the
term model of oncogenesis to refer to a random process that generates subsets of L and therefore de� nes
a probability distribution over 2L. In this section, we brie� y review the tree-based models of oncogenesis
proposed in Desper et al. (1999) and de� ne the extension studied in the present paper.

A probability distribution on 2L is a function p de� ned on the subsets of L such that p.X/ ¸ 0 for all
X, and

P
SµL p[S] D 1.

If p is such a distribution, then for any x; y 2 L we de� ne the probability of an event

px D
X

X½L;x2X

p.X/;

and of a pair of events,

pxy D
X

X½L;fx;yg½X

p.X/:

We de� ne prx D px . We use the notation pxjy to denote the conditional probability pxjy D pxy=py .
We shall consider trees that de� ne distributions on 2L. The vertex set V of these trees includes a root

vertex r (an extra vertex not in L added to denote the null event, or an initial normal state), the genetic
events in L, and possibly other nodes. In Desper et al. (1999), we required that there be no other nodes
besides r and those in L; i.e., V D L [ frg. In the trees considered here, we require that L ½ V be
precisely the set of leaves of the tree.

A rooted tree on V is a triple T D .V ; E; r/, where r 2 V is a special vertex called the root, and E is
a set of pairs of vertices such that

1. for each vertex v 2 V there is at most one edge .u; v/ 2 E with v as its second component,
2. there is no edge .u; r/ entering r ,
3. there is no cycle, that is, no sequence of edges in E of the form ..v0; v1/; .v1; v2/; : : : ; .vk¡1; vk/;

.vk; v0//,
4. for each v 2 V nfrg there is a sequence of edges Pv D ..r; v1/; .v1; v2/; : : : ; .vk¡1; vk//, such that

vk D v, and .vi¡1; vi/ 2 E for all i.

An oncogenetic tree T D .V ; E; r; p; L/ is a rooted tree with a positive real number p.e/ · 1 associated
with each edge e 2 E and with a distinguished nonempty set of nodes L µ V .

Each oncogenetic tree T D .V ; E; r; p; L/ generates a distribution on 2L, as follows. We select a subset
E0 ½ E by including each edge e independently with probability p.e/. We then de� ne the set of active
edges E00 to be all those edges .u; v/ in E0, such that all the edges in the path Pu are also in E0. We then
look at the resulting graph .V; E00/ and consider the set of all vertices in L that are reachable from the
root. This set S µ L is the outcome of this experiment. Let pT denote the resulting distribution on 2L.

Oncogenetic trees are a natural generalization of the path-like models considered previously by Vogelstein
et al. Intuitively, trees are more expressive models when the cancer under study is heterogeneous in genetic
origin, and this appears to be a common characteristic of clinically de� ned cancers. The probability labels
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on edges and the method of mapping a tree to a distribution formally capture the geneticists’ intuition that
the occurrence of some CNAs may predispose others to occur.

In Fig. 1, we show a sample oncogenetic tree, T , rooted on the left, where L is the set of leaves.
The leaves in L correspond to the set of CNAs, L D fC1q; ¡8p; Xqg, while the two interior nodes I 1
and I2 intuitively stand for hidden states which cannot be directly observed. Let e0 D .Root; I 1/; e1 D
.I1; C1q/; e2 D .I1; I2/; e3 D .I2; ¡8p/, and e4 D .I2; CXq/. Table 1 shows the possible sets of active
edges, the resulting output leaf sets, and their corresponding probabilities. Output probabilities can be
read from Table 1 as the sum of probabilities for all possible sets E00 which yield a given output S. For
example, pT .fC1qg/ D :056 C :0784 D :1344. This example demonstrates how edge probabilities induce
a distribution on the set 2L.

2.2. The reconstruction problem

In this paper, as in Desper et al. (1999), we are interested in the problem of reconstructing oncogenetic
trees from samples of a distribution p over 2L. This approach follows in the tradition of learning theory,
where a model is proposed to � t a sampled probability distribution. In other words, our problem is the
following:

Input:

² A set L of genetic events.
² k samples from a distribution p over 2L.

Output: an oncogenetic tree T D .V; E; r; p; L/ with L ½ V , such that pT is an approximation of p

What we have not speci� ed above is the relationship between L and the set of vertices in the trees that
we consider in the reconstruction problem. In Desper et al. (1999) we allow all trees over the vertex set
V D frg [ L. That is, we assumed implicitly that there are no other genetic events other than those in L.
We call this variation of the reconstruction problem the branching model. We also proposed an ef� cient
reconstruction algorithm and proved rigorously that, under realistic assumptions, it indeed converges to the
correct model.

In this paper, we consider the class of all trees rooted at r whose set of leaves is precisely L. In other
words, we allow arbitrary unknown (“hidden”) genetic events to be the internal nodes of the oncogenetic
tree. In doing so, however, we implicitly make the assumption that the observed genetic events in L are all
leaves of the tree. Thus, no single event is a necessary precursor to any other event (an assumption which
is justi� ed by the data.) We call this the distance-based model, because in our reconstruction methodology

FIG. 1. Sample oncogenetic tree.
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Table 1. Output Sets for Sample Tree

Active edges E00 Active leaf set S Probability

; ; .3
fe0g ; .:7/.:6/.:2/ D :084

fe0; e1g fC1qg .:7/.:4/.:2/ D :056
fe0; e2g ; .:7/.:6/.:8/.:7/.:5/ D :1176

fe0; e1; e2g fC1qg .:7/.:4/.:8/.:7/.:5/ D :0784
fe0; e2; e3g f¡8pg .:7/.:6/.:8/.:3/.:5/ D :0504

fe0; e1; e2; e3g fC1q; ¡8pg .:7/.:4/.:8/.:3/.:5/ D :0336
fe0; e2; e4g fCXqg .:7/.:6/.:8/.:7/.:5/ D :1176

fe0; e1; e2; e4g fC1q; CXqg .:7/.:4/.:8/.:7/.:5/ D :0784
fe0; e2; e3; e4g f¡8p; CXqg .:7/.:6/.:8/.:3/.:5/ D :0504

fe0; e1; e2; e3; e4g fC1q; ¡8p; CXqg .:7/.:4/.:8/.:3/.:5/ D :0336

we use distance-based algorithms from the phylogenetic literature. In the next section, we explain our main
results. As with the branching model, there are ef� cient algorithms for � tting distance-based trees which
can be proved, under plausible assumptions, to approximate the correct tree. One of the main attractions
of the distance-based model is that it allows us to utilize for oncogenetic trees the extensive methodology
(and software) that has developed over decades for the phylogenetic tree reconstruction problem.

Since the reconstruction problem requires learning a probability distribution from samples, no algorithm
can guarantee that it reconstructs the “exact” tree, so our task is essentially one of approximation. Our
strategy is the following: from the samples of p we � rst infer a “distance” metric TL between the events in
L—intuitively, the distance between two events i and j captures the extent to which i and j are correlated.
We then � nd a tree whose path metric is indeed close to the inferred TL. This approach is inspired by the
Cavender-Farris (CF) tree reconstruction algorithm of Farach and Kannan (1996). Therefore, we review
some relevant material about CF trees.

2.3. Cavender-Farris trees

Molecular biologists and statisticians model evolution as a Markov process proceeding through a tree
structure, which represents the evolutionary history of a set of species. Cavender (1978) and Farris (1973)
proposed a very simpli� ed model, in which we follow the evolution of a binary value (the presence or
absence of a genetic element, say) through the set of species.

A Cavender-Farris tree, or CF tree, is a weighted, rooted tree T D .V ; E; r; p/ with an edge probability
function p : E ! .0; :5/. Associated with such a tree is the following probabilistic experiment. One
assigns the bit 0 or 1 to each node of the tree inductively. The bit 1 is assigned at the root, and for each
edge e D .u; v/ 2 E, the bit at v equals the bit at u with probability 1 ¡ pe and differs with probability
pe. The outcome is the set of all leaves assigned 1. Denote the resulting probability distribution as pCF

T .
An oncogenetic tree can be viewed as a one-sided CF tree, where the bits can � ip from 1 to 0 (if the
corresponding edge is not selected in E0) but a bit cannot � ip from 0 back to 1. (Another difference is
that oncogenetic trees allow a greater range of edge probabilities.)

Let T D .V; E; r; p/ be a CF tree with leaf set L ½ V and associated probability distribution pCF
T on

2L. The CF tree reconstruction problem is this:

Input: k samples of pCF
T .

Output: A tree T ¤ D .V ¤; E¤; r¤; p¤/ with leaf set L ½ V ¤, such that pCF
T ¤ is an approximation for pCF

T .

Farach and Kannan (1996) proposed measuring the quality of an algorithm’s approximation via the L1

distance between the distribution of the output tree and the distribution of the true tree: kT ; T ¤k1 DP
v2f0;1gL jpCF

T .v/ ¡ pCF
T ¤ .v/j. We shall use the same measure to show convergence for our oncogenetic

tree reconstruction algorithm.
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2.4. Path metrics

Suppose T D .V; E; d/ is an undirected tree with edge weights d : E ! RC. For each x; y 2 V , de� ne
Pxy to be the unique path in T from x to y. Then d induces a metric on V via dT .x; y/ D

P
e2Pxy

d.e/.
For S ½ V , de� ne dT jS to be the restriction of dT to S. We call dT a path metric (it is also called an
additive metric or a tree metric in the literature).

Given a � nite set L and a metric d : L2 ! RC on it, it is of interest to tell if there is a tree T with L

as its set of leaves such that dT jL D d . In the phylogenetic application, the vertices of T are all common
ancestors of the extant species L, and T then represents the evolutionary history of L; see Barthélemy and
Guénoche (1991), Swofford and Olsen (1990), Waterman et al. (1977), and references therein. Usually,
one does not know d exactly, but rather some approximation d 0 of d , such that N.d; d0/ is small for some
norm N on the space of path metrics. Recovering d , or � nding another tree-like approximation to d 0, is
called the numerical taxonomy problem:

Input: d 0 : S2 ! RC, a distance matrix, N a norm on distance matrices.

Output: A weighted tree T D .V; E; d/ with S µ V such that N.dT jS ; d0/ is small.

When N is the L1 or L2 norm, Day (1987) showed that minimizing the distance N.dT ; d 0/ is NP-
complete. Agarwala et al. (1999) developed an approximation algorithm when N is the L1 norm. Com-
monly used numerical taxonomy algorithms include neighbor-joining (Saitou and Nei, 1987), the single-
and double-pivot method (Cohen and Farach, 1997), and the Fitch-Margoliash (1967) least-squares method.

Many algorithms in phylogenetics work by reducing the CF tree recovery problem to the numerical
taxonomy problem, as follows. If T D .V; E; r; p/ is a CF tree, we de� ne a path metric by taking
de D ¡ log.1 ¡ 2pe/ for each edge e. Then, if u and v are any two leaves of T and we set puv to the
probability that u and v have different bits, we observe the relationship

d.u; v/ D
X

e2Puv

de D ¡ log.1 ¡ 2puv/: (1)

3. RECONSTRUCTING ONCOGENETIC TREES

3.1. The algorithm

Let T be an unknown oncogenetic tree with leaf set L. We are given a sample D of k subsets of L

generated by T . The reconstruction problem asks us to produce an estimate tree T ¤ with leaf set L such
that the probability distribution pT ¤ approximates the distribution pT induced by the true oncogenetic
tree T .

To use tree-� tting for oncogenetic trees, we need to compute a path metric from the distribution pT . By
analogy with (1), and since probabilities are multiplicative from root to leaf, a logical choice for a path
edge weight is the negative logarithm of edge probabilities. Thus, we de� ne a path metric dT on T by
assigning the distance d.e/ D ¡ logp.e/ to each edge e. Notice that, if x and y are two leaves of T , their
distance can be easily veri� ed to be

dT .x; y/ D ¡2 log pxy C logpx C logpy :

We can now state our reconstruction algorithm:

1. For each event x 2 L, let Opx be the observed probability of the event x occurring, that is, the number
of subsets in D containing x, divided by k.

2. For each pair of events, x and y, let Opxy be the observed joint probability of x and y, that is, the number
of subsets in D containing both x and y , divided by k.

3. For each x; y, let Od.x; y/ D ¡2 log Opxy C log Opx C log Opy .
4. Use a tree-� tting algorithm to � nd a tree T ¤ whose associated metric d¤ D dT ¤ is close to Od .
5. Return T ¤.
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Suppose that the obtained samples come indeed from an oncogenetic tree T . As the sample size increases,
Od converges to dT , the true metric of T . Since the path metric d¤ resulting from Step 4 is close to Od , it is
also close to dT . For our theoretical analysis (see the next subsection) we use in Step 4 the pivot method
of Agarwala et al. (1999), which allows us to formally prove that the tree obtained indeed approximates
the correct oncogenetic tree. In practice, our software feeds the distance metric Od computed in Step 3 into
several existing phylogenetics software packages (which have been used for many years and are widely
believed to work well in practice) to compute a tree, and we choose the best of these trees as T ¤.

3.2. Approximation proof

We measure the distance between two trees by the L1 distance (Farach and Kannan, 1996; Ambainis
et al., 1997) between their corresponding distributions.

Let pmin > 0 be the smallest value for px among all x 2 L. Our main result is the following:

Theorem 3.1. Suppose that the input data are indeed k samples from the distribution pT of an
oncogenetic tree. T . Our oncogenetic tree reconstruction algorithm converges to a tree T ¤ and distribution
pT ¤ such that the expected L1 distance between pT and pT ¤ is O.jLj2=

p
kpmin/.

Note that our theorem implies that, when the number of samples becomes large in comparison to jLj4
pmin

,
the reconstructed oncogenetic tree induces a distribution close to that of the true oncogenetic tree. This is
useful as an indication for the number of samples needed for our method to be theoretically conclusive. As
we shall see in the next section, in the use of our algorithm L is quite small and pmin not too miniscule,
because we choose a subset of common events to work with. Therefore, the guarantees of the theorem
become relevant for quite reasonable data. Of course, one hopes that, in practice, good approximations
may occur with even smaller samples than guaranteed by our theorem.

To prove the theorem, we will � rst show that we can achieve a good value for ², which will lead to a
bound on the L1 distance between the true distance-tree and the output distance-tree. We will then show
that the L1 bound will translate to a bound in the error on all edges shared by the true tree and the test tree
and that any edges not shared by the two trees will be very short. Finally, we will show how an edgewise
bound on the length estimates leads to a bound on the variational distance between the corresponding
probability distributions. The general direction of the proof parallels the proofs from Farach and Kannan
(1996) used for learning Cavender-Farris trees.

Lemma 3.1. Given k samples from an oncogenetic tree T , for each x; y 2 L.T /, let Odxy be the estimate

for dxy . Let ² D maxx;y jdxy ¡ Odxy j. Then E[²] D O
±

jLjp
kpmin

²
, where pmin is the minimum probability of

any event in L.

Given k samples from the tree T , for each edge e D .u; v/, let Ope be the observed probability of e being
active, given that u was reachable from the set E00, and let ±e D Ope ¡ pe . (Here, “observed” probability is
something of a misnomer, as the states at u and v may both be hidden from observation.)

Consider a � xed pair of leaves, x; y, and let u be the lease common ancestor of x; y in T . Then
dxy D ¡ log pxju ¡ logpyju.

Let ±xju D Opxju ¡ pxju; ±yju D Opyju ¡ pyju. ±x D Opx ¡ px , and ±y D Opy ¡ py . Then

²xy D j Odxy ¡ dxy j

D j ¡ log. Opxju/ ¡ log. Opyju/ C log.pxju/ C log.pyju/j

· j ¡ log.pxju C ±xju/ C log.pxju/j C j ¡ log.pyju C ±yju/ C log.pyju/j

·
X

e2Pxy

j ¡ log.pe C ±e/ C log.pe/j: (2)
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De� ne ² D maxx;y ²xy . From Inequality (2) it follows that

² ·
X

e2T

j ¡ log.pe C ±e/ C log.pe/j:

Consider a given term j¡log.pe C±e/Clog.pe/j. Using the general inequality jf .t C±/¡f .t/j · jf 0.c/j¤±

for any differentiable function f , where t < c < t C ±, and the fact that the derivative of log t is 1=t , we
obtain the inequality

j ¡ log.pe C ±e/ C log.pe/j D O

³
j±ej
pe

´
:

A standard result is that the sample variance with k samples equals the variance divided by k (Sokal
and Rohlf, 1995, p. 138). From this it follows that E[±2

e ] D O
¡ pe

k

¢
. By the concavity of the square-root

function, E[j±ej] D O
±q

pe

k

²
.

Since pmin is the minimum probability over all events, pe ¸ pmin, and thus E
h

j±e j
pe

i
D O

±q
1

kpmin

²
.

Summing over the edges in T yields E[²] D O
±

jLjp
kpmin

²
. We have used here the fact that T has no internal

node not of degree one; such nodes are redundant, as the two edges adjacent to them can be combined. In
such trees, the number of edges is at most twice the number jLj of leaves.

We have established so far that the metric inferred from the data, Od , differs from the correct path metric

dT by O
±

1p
kpmin

²
. Thus the tree T ¤ produces a metric dT ¤ which observes the same bound.

Next, we relate the L1 distance from T to a bound on internal edge length errors. Given two trees,
T ; T 0, on the same leaf set L, we say the edges e 2 E.T / and e0 2 E.T 0/ correspond if they determine
the same partition of the leaf set, i.e., if there is a bipartition L D L1 [ L2 such that, for every u 2 L1 and
every v 2 L2; e 2 Puv in T and e0 2 Puv in T 0.

Lemma 3.2. Suppose T ; T 0 are two trees on the same leaf set L such that the weight functions w; w0

induce the path metrics DT and DT 0 , respectively. If kDT ¡ DT 0k1 · ±, then for any pair of corresponding
edges, e 2 E.T / and e0 2 E.T 0/, we observe the inequality jw.e/ ¡ w0.e0/j · 2±. Also, if e is an edge in
T which corresponds to no edge e0 2 E.T 0/, then w.e/ · 2±.

This lemma is a generalized version of Lemmas 6 and 7 in (Farach and Kannan, 1996).

Proof of Lemma 3.2. If the edges e; e0 are corresponding edges in T ; T 0, then there is a bipartition
of L D L1 [ L2 and leaves a; b 2 L1; c; d 2 L2 such that

w.e/ ¡ w.e0/ D .1=2/[.DT .a; d/ C DT .b; c/ ¡ DT .a; b/ ¡ DT .c; d//

¡ .DT 0.a; d/ C DT 0.b; c/ ¡ DT 0.a; b/ ¡ DT 0.c; d//]:

We observe the bound jw.e/ ¡ w0.e0/j · 2± by comparing the like terms on the right-hand side with the
L1 bound. Now consider an edge e 2 E.T /nE.T 0/. Let L1 [ L2 be the partition of L induced by e.

There are two possibilities. It may be possible to add an edge e0 to T 0 which separates L1 from L2. If
so, we may consider such an edge to be part of T 0, with a weight 0. Then we revert to the prior argument.
If it is not possible to add such an edge to T 0, then there must be an edge e0 2 E.T 0/ inducing a partition
L0

1 [ L0
2 with Li \ L0

j 6D ; for i; j ¡ 1; 2. Select a 2 L1 \ L0
1; b 2 L1 \ L0

2; c 2 L2 \ L0
1, and d 2 L2 \ L0

2.
Then

w.e/ D .1=2/.DT .a; c/ C DT .b; d/ ¡ DT .a; b/ ¡ DT .c; d//

· .1=2/..DT 0.a; c/ C DT 0.b; d/ ¡ DT 0.a; b/ ¡ DT 0.c; d/ C 4±/

· 2±:
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It remains to show the same bound holds for the distributions pT ¤ and pT . This follows from the
following lemma.

Lemma 3.3. If kdT ¤ ¡ dT k1 < ±, then kpT ¤ ¡ pT g1 D O.jLj±/.

Proof. We can assume that both T and T ¤ have leaves L and the same number of edges and vertices
(by allowing edges to have length 0). The proof proceeds by showing that for each high-length edge in
T , there is a corresponding edge of similar length in T ¤ and vice versa. First we bound the discrepancies
in lengths of the corresponding edges and show that the noncorresponding edges must have small length.
Then we extend the argument to show that the lengths of paths to the same leaf are either similar or small,
which leads to a bound on the difference between pT ¤ and pT .

Each edge e in T either corresponds exactly to an edge e¤ in T ¤ with jw.e/ ¡ w¤.e¤/j < 2±, or
jw.e/j < 2±. Recall that the transformation from distances back to probabilities is p.e/ D exp.¡d.e//.
Since d.e/ ¸ 0, the mean value theorem implies that j exp.¡.d.e/ C 2±// ¡ exp.¡d.e//j · 2±. Thus each
edge e in T either corresponds to an edge e¤ in T ¤ with jp.e/ ¡ p¤.e¤/j < 2±, or p.e/ ¸ .1 ¡ 2±/.
Similarly, any edge e¤ in T ¤ not corresponding to an edge in T satis� es p¤.e¤/ ¸ 1 ¡ 2±.

To bound the distance between distributions, suppose that we sample sets of events from T and T ¤ as
described in Section 2. If edges e and e¤ correspond, then we decide whether to include or exclude them
by selecting a random number ze uniformly from [0,1]. If ze < min.p.e/; p.e¤//, both edges are selected,
while if ze > max.p.e/; p¤.e¤//, both edges are not selected. Only if ze falls in between the two edge
probabilities, is the edge selection discrepant.

For each edge e in E.T / [ E.T ¤/, let the random variable Xe be 0 if the edge e is not selected,
and 1 if e is selected. A suf� cient condition for producing the same output from T and T ¤ is that each
pair of corresponding edges e, e¤ Xe D X¤

e , and for every edge e 2 E.T /nE.T ¤/, and every edge
e 2 E.T ¤/nE.T /; Xe D 0 D X¤

e . Conversely, the outputs differ only if either the corresponding edges
have different selection status or if an edge with no corresponding partner is selected. The probabilities of
these two selection discrepancies gives an upper bound on the variational distance. Speci� cally,

V .T ; T ¤/ ·
X

e2E.T /\E.T ¤/

jw.e/ ¡ w.e¤/j C
X

e2E.T /nE.T ¤/

.1 ¡ p.e// C
X

e¤2E.T ¤/

.1 ¡ p¤.e¤// D O.jLj±/:

Proof of the Theorem. The pivot method of Agarwala et al. (1999) for tree-� tting provides the
following guarantee: if there is a path metric D such that kD ¡ dk1 D ², then the pivot method returns
a tree T ¤ with kdT ¤ ¡ Odk1 · 3² . Thus kD ¡ dT ¤k1 · 4² . By Lemma 3.1, we know that the expected

value E[²] D O
±

jLjp
kpmin

²
. By Lemma 3.2, the same bound holds for the error of edge estimates, and by

Lemma 3.2 the L1 bound is O.jLj²/.

The analysis above is fairly loose with regard to jLj. However, for the data sets we have looked at, jLj
is usually quite small.

4. A DISTANCE-BASED TREE FOR RENAL CANCER

We illustrate the usage of our distance-based method on a set of 116 cases of clear cell renal cell
carcinoma from the laboratory of H. M. that was collected using CGH as described in Jiang et al. (1998).
Kidney cancer is very heterogeneous in its histology and its genetic origin (Erlandsson, 1998). “Clear cell”
renal cell carcinoma is one histological category of nonpapillary kidney cancer. Renal cancer is known
to have both familial and sporadic forms. The familial forms are typically caused by a germ-line defect
(i.e., inherited at birth and present in all cells) in a tumor suppressor gene. One copy of the gene on the
two homologous pairs of chromosomes is defective at conception, and the cancer occurs if the other copy
becomes defective in a renal cell later on. Most renal cancers (>90% [Motzer et al., 1996]) are sporadic
cases where two mutations occur after birth in some renal cells. The gene responsible for clear cell renal
cell carcinoma associated with the rare Von Hippel-Lindau Syndrome has been identi� ed on chromosome
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arm 3p (Latif et al., 1993). About 70–80% of sporadic clear cell renal cell carcinomas have a loss of the
Von Hippel-Lindau gene on chromosome arm 3p (Gnarra et al., 1994; Moch et al., 1998).

Studies of the role of the Von Hippel-Lindau gene in renal cancer suggest that both copies should
become defective early in the oncogenesis process, but that a loss of this gene alone may not be suf� cient
to cause renal cancer. For example, Thrash-Bingham et al. (1995) used a different laboratory technique to
look only for losses in 33 renal cell carcinomas, and they found a wide variety of chromosomal losses.
Among 13 cases are clear cell renal carcinomas, they observed 5 losses on 3p.

The � rst step of our modeling, before applying the tree-� tting algorithm, is to select a small set of
events that appear to be most relevant. Because cancer involves genetic instability and because CGH does
have false positives, many of the possible 82 events may appear in a small percentage of tumors. To
select events that appear to occur nonrandomly, we used the method of Brodeur et al. (1982). This method
starts with prior probabilities of all events and uses simulation to derive a distribution under the null
hypothesis that all events are random. For each replicate (of 116 tumors) a score is computed relating the
most frequent events to their prior probabilities, and the maximum score is recorded. In the real data an
event is considered nonrandom if its score is above the 95th percentile of maximum scores from the null
distribution. We assumed for the prior distribution that gains and losses have equal probability, and the
probability for a chromosome arm is proportional to its size. Arm sizes were derived from Morton (1991).
We used 10,000 replicates. The method of Brodeur et al. selected 12 events: ¡3p, ¡4p, ¡4q, ¡6q, ¡8p,
¡9p, ¡13q, ¡18q, ¡Xp,C17p, C17q, CXp.

The distance-based tree (Fig. 2) was constructed by a four-step process. First, the oncogenetic tree
inference algorithm described above was used to compute a distance matrix. Second, this distance matrix
was fed into both the Fitch and Neighbor programs from the PHYLIP (version 3.5c) package (Felsenstein,
1989) to obtain initial topologies. The Fitch program (Fitch and Margoliash, 1967) � nds the tree T ¤

minimizing
X

x;y

.D¤.x; y/ ¡ D.x; y//2

D.x; y/p

where p D 0; 1, or 2 depending on the setting. (All three options were tested.) The Neighbor program
(Saitou and Nei, 1987) uses the neighbor-joining heuristic. Starting from a tree with star topology, it iter-
atively creates subtrees linking together leaves close to each other (or, at later stages, subtrees relatively

FIG. 2. Distance-based tree for RCC data.



800 DESPER ET AL.

close to each other). Third, a linear program was used upon these topologies to � nd optimal edge-lengths.
The linear program returned some zero-length edges, so nearest-neighbor interchanges (NNIs) were tested
across each nonpendant zero-length edge, with edge-lengths re-optimized. Fourth, edge-lengths were con-
verted back to edge-probabilities, and the Fitch tree generated with p D 2 was observed to be measurably
superior at matching leaf-to-leaf probability weights. This tree is shown in Fig. 2, with edge-lengths drawn
to scale as horizontal distances. Vertical distances are included solely to make the picture clearer.

The distance-based tree is consistent with the established theory that a loss on 3p is an early important
event for clear cell renal carcinoma and suggests that it is not causatively associated with speci� c other
gains or losses. Our model predicts that a loss on 4q is an important early event for clear cell renal
carcinomas and that, even though the loss on 3p is more common, the loss on 4q correlates more highly
with the occurrence of other events. The subtrees in our model also predict that there may be at least two
subclasses of RCC loosely associated with ¡4q: one subclass is marked by the events ¡6q, C17q, C17p,
and the other by the events ¡9p, ¡13q, ¡18q. The event ¡4p is closer to the � rst subclass, but may
represent a third subclass since it appears in its own subtree or may be closer to independent as indicated
by the long branch to it. The extremely long branches to ¡8p and CXp and the placement to the outside
suggest that these two events are more likely to be late effects than early causes and that these two events
are not associated with any particular subclass of RCC.

Using the method of Desper et al. (1999) we constructed another tree on the same set of events based
on a maximum branching in a weighted graph. See Fig. 3. Remarkably, both trees share many relevant
properties including:

1. ¡3p and ¡4q are important early events near the root.
2. Although ¡3p is close to the root, ¡4q sits more centrally in relation to the main body of the tree.
3. C17q is tightly linked with and precedes C17p in a side branch closely related to ¡6q.
4. Both trees have subtrees with ¡13q, ¡9p, and ¡18q.
5. Both show a close relationship between ¡4q and ¡4p.
6. In both trees, ¡8p is essentially independent from all the other events.

The only signi� cant difference lies with the placement of the relatively rare event CXp.
In comparing the trees, it is important to keep in mind the different methods of data analysis which

lead to the tree construction. The branching in Fig. 3 is generated purely from considering individual
probabilities and pairwise joint probabilities. A strongly correlated pair is usually presented in the tree
with an edge from one to the other. The placement of leaves which are incident to the root, such as ¡3p
and ¡8p, can indicate that the event shares no strong correlations with any other events, as appears to be
the case for ¡8p, or that the event may correlate, but not as much as another event, as appears to be the
case for ¡3p with respect to ¡4q.

In contrast, the tree-� tting method considers all pairwise correlations simultaneously. If an event is very
weakly correlated with a large number of events, it will be pulled to the subtree containing those events.
Such a phenomenon explains the fact that ¡3p is pulled toward the center of the distance-based tree. The
relatively long length of the edge from the root to the � rst central node suggests a general phenomenon
that the occurrence of any one event makes any other event more likely.

FIG. 3. Maximum-weight branching for RCC data.
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5. DISCUSSION AND FURTHER WORK

Identifying early genetic changes in tumors and markers of genetic heterogeneity are important problems
in cancer genetics. Comparative genomic hybridization (CGH) is a powerful laboratory technique for
identifying genetic changes in tumors. Mathematical modeling of CGH data should help interpret the
results. Most of the previous analyses of CGH data have simply counted the frequencies of different events
and noticed in various ways that some events occurred much more frequently than would be expected at
random (see Forozan et al. [1997] and references therein). The collection of large sample sets, such as the
renal cancer set used herein, affords the opportunity to analyze co-occurrences of multiple events looking
for more complex and comprehensive models of the genetic changes that mark tumor development.

In this paper, we continued our investigation of tree models of tumor progression started in Desper et al.
(1999). We showed how to transform the probabilistic trees into distance-based phylogenetic trees. We
de� ned the problem of inferring a distance-based oncogenetic tree from CGH data, and we proved that
it is possible to infer a tree that is provably not too far in variational distance from the optimal tree in
the L1 norm. However, other phylogenetic tree inference methods, without provable bounds, are used in
practice, and we suggest use of these methods on real data.

Comparing how we use the branching and distance-based tree models to make predictions illustrates
some of the strengths of the new distance-based method. For both types of trees early events should be
close to the root. The distance-based approach quanti� es this precisely and allows us to infer an order
of events by ranking according to distance to the root. In the branching tree approach, distances are
measured less precisely by numbers of edges. A CNA that is adjacent to the root in the branching, but
has no children (such as ¡8p in the renal cancer branching tree), might re� ect that this CNA is not well
correlated with any other CNA rather than that it is an early event. Both methods tend to cluster CNAs that
occur together in subtrees, but the distance-based method is more robust in that it preserves information
about the co-occurrence of all pairs of CNAs, while the branching tree only shows the best correlated
pairs. One advantage of the branching trees is that edges between CNAs lead to direct predictions of
cause-and-effect relationships.

In practice, as in the renal cancer example above, we construct both types of trees. We look for similarities
in which events are near the root to predict the early CNAs. We look for similar clustering in subtrees to
predict which events tend to occur together and may mark genetically homogeneous subsets.

Both the distance-based method and the branching-tree method are encoded in software that is freely
available by sending e-mail to desper@ncbi.nlm.nih.gov or schaffer@helix.nih.gov. The software includes
an implementation of the method of Brodeur et al. (1982) to select the nonrandom events. For the branching
tree method, our software is self-contained. For the distance-based method, our software goes as far as
producing a distance matrix. In practice, we feed the distance matrix into various components of PHYLIP
(Felsenstein, 1989) and/or other locally produced software to select the best distance-based tree. The use
of external software can be a complication in the short term since there are several choices for how to
produce the best distance-based tree and nontrivial user intervention is needed. In the long run, reducing
tumor progression modeling to phylogenetic tree inference should be an advantage, since we would expect
new and better methods to be developed for tree inference due to its many uses.

We illustrated our distance-based oncogenetic tree methods on a large CGH data set for renal cell
carcinoma (RCC), and we also compared distance-based and branching trees. The distance-based tree is
consistent with the established theory that ¡3p is an important early event in RCC. The distance-based
tree supports the prediction we made from the branching tree (Desper et al., 1999) that ¡4q is another
important early event in RCC. Both the distance-based tree and the branching tree suggest that there may
be two classes of RCC in which ¡4q occurs: one class marked by ¡6q, C17q, C17p, and the other
class marked by ¡9q, ¡13p, ¡18q. The distance-based tree clari� es that ¡8p is largely independent of
other events, which is consistent with the branching tree, but is not the only possible interpretation of the
branching tree.

Not nearly enough is known experimentally about tumor progression and CGH measurements to validate
our models. It is extremely hard to � gure out the early events in the laboratory, so our tree models should
be very helpful to cancer geneticists. Since Desper et al. (1999) was published and this paper was submitted
for publication, our tree modeling methods have been used in several studies, including one on ovarian
cancer (Simon et al., 2000), and one on breast cancer (Kainu et al., 2000), which have already been
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published. In the latter study, the tree models provided one line of evidence that the long-sought third gene
for hereditary susceptibility to breast cancer may be on chromosome 13.

Future theoretical work will include development of maximum likelihood methods to compare trees
of various topologies. Also, the underlying mathematical models are suf� ciently general to be applied to
non-CGH data, and we are applying the methods described to some large breakpoint data sets, as well
as other CGH data sets. The essential purpose of our mathematical modeling is to suggest directions for
experimental follow-up to better understand the genetic changes that occur in human cancer cells.
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